Optimal Solutions for C1 and C2 problems
 
 

Problem

NV

Distance

Authors

Problem

NV

Distance

Authors

C101.25

3

191.3

KDMSS

C201.25 

   2

214.7

CR+L

C101.50

5

362.4

KDMSS

C201.50 

   3

360.2

CR+L

C101.100

10

827.3

KDMSS

C201.100 

   3

589.1

CR+KLM

C102.25

3

190.3

KDMSS

C202.25 

   2

214.7

CR+L

C102.50

5

361.4

KDMSS

C202.50 

   3

360.2

CR+KLM

C102.100

10

827.3

KDMSS

C202.100 

   3

589.1

CR+KLM

C103.25

3

190.3

KDMSS

C203.25 

   2

214.7

CR+L

C103.50

5

361.4

KDMSS

C203.50 

   3

359.8

CR+KLM

C103.100

10

826.3

KDMSS

C203.100

   3

    588.7

 KLM

C104.25

3

186.9

KDMSS

C204.25 

   2

213.1

CR+KLM

C104.50

5

358.0

KDMSS

C204.50

   2

    350.1

 KLM

C104.100

10

822.9

KDMSS

C204.100

   3

    588.1

 IV

C105.25

3

191.3

KDMSS

C205.25 

   2

214.7

CR+L

C105.50

5

362.4

KDMSS

C205.50 

   3

359.8

CR+KLM

C105.100

10

827.3

KDMSS

C205.100 

   3

586.4

CR+KLM

C106.25

3

191.3

KDMSS

C206.25 

   2

214.7

CR+L

C106.50

5

362.4

KDMSS

C206.50 

   3

359.8

CR+KLM

C106.100

10

827.3

KDMSS

C206.100 

   3

586.0

CR+KLM

C107.25

3

191.3

KDMSS

C207.25 

   2

214.5

CR+L

C107.50

5

362.4

KDMSS

C207.50 

   3

359.6

CR+KLM

C107.100

10

827.3

KDMSS

C207.100 

   3

585.8

CR+KLM

C108.25

3

191.3

KDMSS

C208.25 

   2

214.5

CR+L

C108.50

5

362.4

KDMSS

C208.50 

   2

350.5

CR+KLM

C108.100

10

827.3

KDMSS

C208.100

   3

    585.8

 KLM

C109.25

3

191.3

KDMSS

 

 

 

 

C109.50

5

362.4

KDMSS

 

 

 

 

C109.100

10

827.3

KDMSS

 

 

 

 

Legend:

C - A. Chabrier, “Vehicle Routing Problem with Elementary Shortest Path based Column Generation.” Forthcoming in: Computers and Operations Research (2005).

CR - W. Cook and J. L. Rich,  "A parallel cutting plane algorithm for the vehicle routing problem with time windows," Working Paper, Computational and Applied Mathematics, Rice University, Houston, TX, 1999.

DLP - E. Danna and C. Le Pape, “Accelerating branch-and-price with local search: A case study on the vehicle routing problem with time windows,” In: Column Generation, G. Desaulniers, J. Desrosiers, and M. M. Solomon (eds.), 99-130, Kluwer Academic Publishers (2005).

IV -  S. Irnich and D. Villeneuve, “The shortest path problem with k-cycle elimination (k ≥ 3): Improving a branch-and-price algorithm for the VRPTW.” Forthcoming in: INFORMS Journal of Computing (2005).

KDMSS - N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis,  "2-Path Cuts for the Vehicle Routing Problem with Time Windows," Transportation Science, Vol. 33 (1), 101-116 (1999).

KLM - B. Kallehauge, J. Larsen, and O.B.G. Madsen.  "Lagrangean duality and non-differentiable optimization applied on routing with time windows - experimental results."  Internal report IMM-REP-2000-8, Department of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark, 2000.

L - J. Larsen.  "Parallelization of the vehicle routing problem with time windows."  Ph.D. Thesis IMM-PHD-1999-62, Department of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark, 1999.

Back to Main Page