Optimal Solutions for RC1 and RC2 problems
Problem |
NV |
Distance |
Authors |
Problem |
NV |
Distance |
Authors |
RC101.25 |
4 |
461.1 |
KDMSS |
RC201.25 |
3 |
360.2 |
CR+L |
RC101.50 |
8 |
944 |
KDMSS |
RC201.50 |
5 |
684.8 |
L+KLM |
RC101.100 |
15 |
1619.8 |
KDMSS |
RC201.100 |
9 |
1261.8 |
KLM |
RC102.25 |
3 |
351.8 |
KDMSS |
RC202.25 |
3 |
338.0 |
CR+KLM |
RC102.50 |
7 |
822.5 |
KDMSS |
RC202.50 |
5 |
613.6 |
IV+C |
RC102.100 |
14 |
1457.4 |
CR+KLM |
RC202.100 |
8 |
1092.3 |
IV+C |
RC103.25 |
3 |
332.8 |
KDMSS |
RC203.25 |
3 |
326.9 |
IV+C |
RC103.50 |
6 |
710.9 |
KDMSS |
RC203.50 |
4 |
555.3 |
IV+C |
RC103.100 |
11 |
1258.0 |
CR+KLM |
RC203.100 |
|
|
|
RC104.25 |
3 |
306.6 |
KDMSS |
RC204.25 |
3 |
299.7 |
C |
RC104.50 |
5 |
545.8 |
KDMSS |
RC204.50 |
3 |
444.2 |
DLP |
RC104.100 |
|
|
|
RC204.100 |
|
|
|
RC105.25 |
4 |
411.3 |
KDMSS |
RC205.25 |
3 |
338.0 |
L+KLM |
RC105.50 |
8 |
855.3 |
KDMSS |
RC205.50 |
5 |
630.2 |
IV+C |
RC105.100 |
15 |
1513.7 |
KDMSS |
RC205.100 |
7 |
1154.0 |
IV+C |
RC106.25 |
3 |
345.5 |
KDMSS |
RC206.25 |
3 |
324.0 |
KLM |
RC106.50 |
6 |
723.2 |
KDMSS |
RC206.50 |
5 |
610.0 |
IV+C |
RC106.100 |
|
|
|
RC206.100 |
|
|
|
RC107.25 |
3 |
298.3 |
KDMSS |
RC207.25 |
3 |
298.3 |
KLM |
RC107.50 |
6 |
642.7 |
KDMSS |
RC207.50 |
4 |
558.6 |
C |
RC107.100 |
12 |
1207.8 |
IV |
RC207.100 |
|
|
|
RC108.25 |
3 |
294.5 |
KDMSS |
RC208.25 |
2 |
269.1 |
C |
RC108.50 |
6 |
598.1 |
KDMSS |
RC208.50 |
|
|
|
RC108.100 |
11 |
1114.2 |
IV |
RC208.100 |
|
|
|
Legend:
C - A. Chabrier, “Vehicle Routing Problem with Elementary Shortest Path based Column Generation.” Forthcoming in: Computers and Operations Research (2005).
CR - W. Cook and J. L. Rich, "A parallel cutting plane
algorithm for the vehicle routing problem with time windows," Working
Paper, Computational and Applied Mathematics, Rice University, Houston, TX,
1999.
DLP - E. Danna and C. Le Pape, “Accelerating
branch-and-price with local search: A case study on the vehicle routing problem
with time windows,” In: Column
Generation, G. Desaulniers, J.
Desrosiers, and M. M. Solomon (eds.), 99-130, Kluwer Academic Publishers
(2005).
IV
-
S. Irnich and D. Villeneuve, “The shortest path problem with k-cycle
elimination (k ≥ 3): Improving a branch-and-price algorithm for the
VRPTW.” Forthcoming in: INFORMS Journal of Computing (2005).
KDMSS - N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis, "2-Path Cuts for the Vehicle Routing Problem with Time Windows," Transportation Science, Vol. 33 (1), 101-116 (1999).
KLM - B. Kallehauge, J. Larsen, and
O.B.G. Madsen. "Lagrangean
duality and non-differentiable optimization applied on routing with time
windows - experimental results." Internal report IMM-REP-2000-8,
Department of Mathematical Modelling, Technical University of Denmark,
L - J. Larsen. "Parallelization of the vehicle
routing problem with time windows." Ph.D. Thesis IMM-PHD-1999-62,
Department of Mathematical Modelling,