Optimal Solutions for RC1 and RC2 problems
 
 

Problem

NV

Distance

Authors

Problem

NV

Distance

Authors

RC101.25

4

461.1

KDMSS

RC201.25 

 3

360.2

CR+L

RC101.50

8

944

KDMSS

RC201.50

 5

      684.8

L+KLM

RC101.100

15

1619.8

KDMSS

RC201.100

 9

    1261.8

KLM

RC102.25

3

351.8

KDMSS

RC202.25 

 3

338.0

CR+KLM

RC102.50

7

822.5

KDMSS

RC202.50

 5

      613.6

IV+C

RC102.100

14

1457.4

CR+KLM

RC202.100

 8

    1092.3

IV+C

RC103.25

3

332.8

KDMSS

RC203.25

 3

      326.9

IV+C

RC103.50

6

710.9

KDMSS

RC203.50

 4

      555.3

IV+C

RC103.100

11

1258.0

CR+KLM

RC203.100

 

 

 

RC104.25

3

306.6

KDMSS

RC204.25

 3

      299.7

C

RC104.50

5

545.8

KDMSS

RC204.50

 3

      444.2

 DLP

RC104.100 

 

 

 

RC204.100

 

 

 

RC105.25

4

411.3

KDMSS

RC205.25

 3

      338.0

L+KLM

RC105.50

8

855.3

KDMSS

RC205.50

 5

      630.2

IV+C

RC105.100

15

1513.7

KDMSS

RC205.100

 7

    1154.0

IV+C

RC106.25

3

345.5

KDMSS

RC206.25

 3

      324.0

KLM

RC106.50

6

723.2

KDMSS

RC206.50

 5

      610.0

IV+C

RC106.100 

 

 

 

RC206.100

 

 

 

RC107.25

3

298.3

KDMSS

RC207.25

 3

      298.3

KLM

RC107.50

6

642.7

KDMSS

RC207.50

 4

      558.6

C

RC107.100 

 12

   1207.8

 IV

RC207.100

 

 

 

RC108.25

3

294.5

KDMSS

RC208.25

 2

      269.1

C

RC108.50

6

598.1

KDMSS

RC208.50

 

 

 

RC108.100 

 11

   1114.2

 IV

RC208.100

 

 

 

Legend:

C - A. Chabrier, “Vehicle Routing Problem with Elementary Shortest Path based Column Generation.” Forthcoming in: Computers and Operations Research (2005).

CR - W. Cook and J. L. Rich,  "A parallel cutting plane algorithm for the vehicle routing problem with time windows," Working Paper, Computational and Applied Mathematics, Rice University, Houston, TX, 1999.

DLP - E. Danna and C. Le Pape, “Accelerating branch-and-price with local search: A case study on the vehicle routing problem with time windows,” In: Column Generation, G. Desaulniers, J. Desrosiers, and M. M. Solomon (eds.), 99-130, Kluwer Academic Publishers (2005).

IV -  S. Irnich and D. Villeneuve, “The shortest path problem with k-cycle elimination (k ≥ 3): Improving a branch-and-price algorithm for the VRPTW.” Forthcoming in: INFORMS Journal of Computing (2005).

KDMSS - N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis,  "2-Path Cuts for the Vehicle Routing Problem with Time Windows," Transportation Science, Vol. 33 (1), 101-116 (1999).

KLM - B. Kallehauge, J. Larsen, and O.B.G. Madsen.  "Lagrangean duality and non-differentiable optimization applied on routing with time windows - experimental results."  Internal report IMM-REP-2000-8, Department of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark, 2000.

L - J. Larsen.  "Parallelization of the vehicle routing problem with time windows."  Ph.D. Thesis IMM-PHD-1999-62, Department of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark, 1999.

Back to Main Page